If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x^2+97x+40=0
a = 52; b = 97; c = +40;
Δ = b2-4ac
Δ = 972-4·52·40
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(97)-33}{2*52}=\frac{-130}{104} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(97)+33}{2*52}=\frac{-64}{104} =-8/13 $
| 9(2x+5)=12(-2x+3) | | 25=0.12(x) | | 4x^2+21x-216=0 | | 63-8w=w | | 19/14x+3/7=9/7x | | 6b-4=b | | 26/x=4 | | -15r=-28 | | 6b^2-6b-5=0 | | 7/10x-5/6x=15 | | x+2)(3x-7)=0 | | (x+7)+67=90 | | 2x-9=2(x-6) | | 0.08x+0.09(10,000-x)=90 | | h=7+60(3)-16(3)(3) | | 2=-c-6 | | -196=5(3-6m)-1 | | 2/5a+3=1/3a | | |4x-3|=13 | | 5(3x-7)=-4(-3x-4) | | x^2-2x+12=8x-16 | | 116=-4(7+6)k | | 6-(x+4)=-5+2 | | 33.7=4.8p | | -8=-4(1-3a)-2(a-3) | | 6+2x-10=-4x+44 | | 0y=1/2 | | 7/10x+5/6x=15 | | ^4+2x^2-63=0 | | 8/22=p/55 | | 13=0.16666666667y+2 | | 6x+15=4x+28 |